OFFICIAL TRANSLATION OF

Fachspezifische Bestimmungen für den Studiengang Physics (M.Sc.) vom 5. Dezember 2018 (Amtliche Bekanntmachung Nr. 9 vom 06. Februar 2019)

THIS TRANSLATION IS FOR INFORMATION ONLY – ONLY THE GERMAN VERSION SHALL BE LEGALLY VALID AND ENFORCEABLE!

Subject-Specific Provisions for the Master of Science in Physics

dated 5 December 2018

On 9 January 2019, in accordance with Section 108 subsection 1 of the Hamburg higher education act (Hamburgisches Hochschulgesetz, HmbHG), dated 18 July 2001 (HmbGVBI. p. 171) as amended 18 May 2018 (HmbGVBI. p. 145, 154), the Executive University Board of Universität Hamburg ratified the subject-specific provisions (FSBs) for the Master of Science in Physics adopted by the Faculty of Mathematics, Informatics and Natural Sciences pursuant to Section 91 subsection 2 number 1 HmbHG.

Preamble

These subject-specific provisions supplement the Examination Regulations of the Faculty of Mathematics, Informatics and Natural Sciences dated 11 April 2012 and 4 July 2012, as amended, which govern the master of science (MSc) degree programs and provide a description of the modules for physics as a subject.

I. Supplemental provisions

Section 1 Program and examination objectives, academic degree, and implementation of the degree program

Section 1 subsection 1:

(1) The English-language Master of Science in Physics has a research-oriented profile.

(2) The master's degree program constitutes a further professional qualification enabling in-depth, research-related training in the physics degree program.

(3) Students are able to contemplate complex issues and address them using scientific methods, even beyond the current state of knowledge.

(4) The program provides the subject-specific methods required for the challenges of a changing professional world and interdisciplinary applications and also expands on skills and knowledge that enable students to work scientifically, apply and critically evaluate scientific knowledge, and act responsibly

(5) The Master of Science in Physics qualifies students to enroll in doctoral studies. The doctoral degree regulations provide further detailed information.

The degree program focuses predominantly on

- a) specialized knowledge oriented to current research questions based on indepth fundamental knowledge
- b) methodological and analytical skills that lead to independent expansion of scientific knowledge centered on research methods
- c) imparting in-depth expertise and scholarly knowledge that enables analysis and resolution of problems of basic research, applied research, and technology previously not addressed
- d) enabling students to work independently with a problem-oriented, interdisciplinary, and responsible approach to solving problems from current research in physics and to conclusively present the results
- e) professionally relevant key qualifications.

Section 4 Program and examination structure, modules, and ECTS credits

Section 4 subsections 2 and 3:

(1) The master's degree program is divided into two segments: a one-year advanced specialist learning phase and a one-year research phase.

The one-year specialist learning phase provides the advanced knowledge required for independent work in the field of physics. It consists of advanced modules (= required elective modules) made up of the following five advanced areas:

- accelerator and elementary particle physics
- nanostructure and solid state physics
- laser physics and photon science
- astronomy and astrophysics
- biomedical physics

Modules amounting to a total of 48 ECTS credits must be successfully completed. In these, the following requirements must be met:

- At least 16 ECTS credits must be earned for advanced modules in at least one of the five advanced areas listed. A maximum of 32 ECTS credits may be gained for any individual advanced area.
- Of the 48 ECTS credits in the advanced area, at least eight ECTS credits must come from modules in experimental physics, and a further minimum of eight ECTS credits from theoretical physics.

For the elective area, a total of 12 ECTS credits may be selected, usually over two semesters, from the courses offered at Universität Hamburg. The individual modules should have a logical connection to each other.

The one-year research phase is made up of three modules and should be seen as a single, indivisible unit. The introductory and preparatory projects together make up 30 ECTS credits and are part of the third subject semester. The final subject semester consists of a master's thesis worth 30 ECTS credits. The student must complete the introductory and preparatory projects in the third semester prior to completing the master's thesis to acquire knowledge of current research and special methods from the master's thesis subject area. Students complete the six-month master's thesis in the fourth semester. The thesis should demonstrate that the student is able to work under supervision on a physics problem taken from the latest research and use scientific methods to consistently and comprehensively present and interpret the problem, the means of solving it, and the solution itself.

Students who have successfully completed at least 44 ECTS credits during the first year of study are eligible to commence the research phase and the introductory project. On commencing the research phase, the following must be documented: The Department of Physics academic office must be informed of the date, area of research, and supervising/assigning teacher.

The master's thesis must be supervised by a university teacher from the Department of Physics. They must consent to the supervision before the research phase begins. The research phase may be completed in a working group of the Department of Physics; within the University in the Faculty of Mathematics, Informatics and Natural Sciences or the Faculty of Medicine, depending on the area of specialization; or in nonuniversity research institutions, provided the predominant methodology is that of physics. In this case, the research phase may begin only when the examinations board approves the application and when a member of the University teaching staff declares their consent to providing a second assessment of the master's thesis pursuant to Section 14 subsection 9.

(2) Modules chosen as part of the physics advanced phase may not simultaneously be counted toward the elective area.

(3) Module descriptions are provided in Annex A to the Subject-Specific Provisions for the Master of Science in Physics—Table of Modules and the module handbook for the Master of Science in Physics, which expands upon these subject-specific provisions.

Section 5 Course types

Section 5 sentence 2:

Courses may take any form pursuant to Section 5 of the Revised Examination Regulations for Master of Science Degree Programs. Typically, the advanced phase is made up of a combination of lectures and group work, such as exercises and practical courses and internships, and the research phase is made up of projects and seminars.

Section 13

Completed coursework and module examinations Section 13 subsection 6:

Examinations shall be held in English.

Section 14 Master's thesis

Section 14 subsection 1:

A colloquium consisting of a presentation in English and an academic discussion of the subject matter of the thesis as part of an academic seminar is a mandatory component of the final module. The presentation comprises one-sixth of the grade for the final module. The presentation should be given no later than six weeks after submission of the thesis. The presentation and discussion are assessed by both assessors or by one of the two thesis assessors in the presence of an invigilator. The invigilator must be a doctoral graduate or have an equivalent qualification or higher. The assessment of the thesis should occur promptly, no later than six weeks after submission.

Section 14 subsection 2 sentence 1:

Students who have earned at least 75 ECTS credits in total may be allowed to commence work on the final module, the master's thesis.

Section 14 subsection 4:

The master's thesis must be written in English.

Section 14 subsection 5 sentence 1:

The workload for the master's thesis equates to 30 ECTS credits. The master's thesis must be completed within six months.

Section 15 Evaluation of examinations

Section 15 subsection 3 sentence 5:

If a module is comprised of multiple course examinations, the grade for the module is calculated as the arithmetic mean of all the grades. Exceptions are listed in the module table.

Section 15 subsection 3 sentence 9:

The overall final grade for the master's degree program is comprised of the grade for the advanced phase (50%), the grade for the thesis (45%), and the grade for the elective (5%).

The grade for the advanced phase is calculated as a weighted average of the highest grades amounting to 48 ECTS credits.

The average of the two assessor's grades for the written thesis constitute five-sixths of the grade for the final module (master's thesis) with the grade awarded for the colloquium constituting the remaining one-sixth.

The grade for the elective area is calculated as a weighted average of the highest grades amounting to 12 ECTS credits.

The examinations from the introductory project and the preparatory project are ungraded and are not used to calculate the overall final grade.

Section 15 subsection 4:

The overall final grade "pass with distinction" is awarded if a grade of 1.0 is earned for the master's thesis and all relevant module examinations, with the exception of at most one, are graded 1.0. Given the lack of comparability, ungraded modules such as those graded as "passed" will not be counted toward the calculation of the overall final grade.

Section 24 Effective date

These subject-specific provisions (FSBs) become effective on the day following their official publication by Universität Hamburg. They shall first apply to students commencing their studies in the Winter Semester 2019/20.

Hamburg, 6 February 2019 Universität Hamburg

					I					
Module In	formatio	า			Courses		Examination	ns		
Frequency	Recommended Semester	Module Prerequisites	Module Type: Required (Req), Required Elective (RE), or Elective (E)	Module Number/Code	Module Course Title	Course Type Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	Graded	ECTS Credits
Required N	Nodule (6	0 ECTS credits)								
every semester	third	see section 4 of these subject- specific provisions	Req	PHY-MF-EP	Introductory project	15		Conclusion of the project	no	15
Intended Id Students a Students a	earning ro are familia are able to	esults: ar with current ac independently g	ademic literati ather necessa	ure and possess g ry information, e	greater depth of knowledge in an area of current research from stablish background information, and grasp a specific topic.	m which the subject of the ma	aster's thesis	should arise.		
every semester	third	PHY-MF-EP passed	Req	PHY-MF-VP	Preparatory project	15	PCo m	lecture/c olloquium	no	15
Intended le By complet to issues fr	earning r ting the p rom whic	esults: preparatory assigr h the topic of the	nments, studer master's thesi	nts have sufficier s should arise. Pl	nt knowledge of the subject area and the specific experiment anning and structuring of the intended research project	al and/or theoretical method	s involved to (enable successful a	applica	tion
r every semester	fourth	see section 14 of these subject- specific provisions subsection 2 of these subject- specific provisions	Req	PHY-MF-MA	Master's thesis	30		master's thesis (five-sixths), colloquium (one-sixth)	yes	30

Mod	lule Informa	ation				Courses				Examination	5		
Mod	ule Informa	ation				Cour	rses			Examination	5		
Duration in Semesters	Duration in Semesters Frequency Frequency Recommended Semesters Module Prerequisites Required (Req), Required Elective (RE). or Elective (E) Module Number/Code						Course Title	Course Type	Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	Graded	ECTS Credits
Inter Cano appr	tended learning results: ndidates are able to familiarize themselves with an issue taken from current research, apply appropriate scientific methods with increasing independence, and p propriate form.									nd present the	e results in an a	cademic	ally
Adva	anced speci	alization pl	hase (48 l	ECTS credits)									
Astr	onomy and	astrophysi	cs			T							
1	annually, winter semester	first or second	none	RE	PHY-MV-A-E14	Cosn	nology			none	written examinatio n or oral examinatio n	yes	6
							Cosmology Exercises in cosmology	L, P C	3 1				
Inte Stud	ended learning results: dents are familiar with problem-solving strategies, analytical thinking and theory development in physics and are able to apply mathematical and information technology strategies.												
1	annually, in both winter and summer semester s	first or second	none	RE	PHY-MV-A-E15	Semi	inar Topics in Low Frequency Radio Astronomy			none	presentatio n with written paper	yes	3
_		_					Seminar Topics in Low Frequency Radio Astronomy	S	2				

Intended learning results: In addition to an introduction in the academic discourse, students also gain insights into current research in low frequency radio astronomy.

Duration in Semesters	Frequency	Recommended Semester	Module Prerequisites	Module Type: Required (Req), Required Elective (RE). or Elective (E)	Module Number/Code	Module	Course Title	Course Type	Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	Graded	ECTS Credits
1	annually, winter semester	first or second	none	RE	PHY-MV-A-E17	Extra	galactic astrophysics			none	written examinatio n or oral examinatio n	yes	6
							Extragalactic astrophysics Exercises in extragalactic astrophysics	L, PC	3 1				

Students are familiar with problem-solving strategies, analytical thinking and theory development in physics and are able to apply mathematical and information technology strategies.

1	every semester	first or second	none	RE	PHY-MV-A-E19	Extra	galactic astrophysics seminar			none	presenta n written paper	atio with	yes	3
							Extragalactic astrophysics seminar	S	2					

Intended learning results:

Students are able to understand the presentation of research results, read and understand specialist articles, assess astronomical data, and know about theory development in physics.

1	every two years, summer semester	first or second	none	RE	PHY-MV-A-E23	Galax	y evolution			none	written examinatio n or oral examinatio n	yes	7
							Galaxy evolution Exercises in galaxy evolution	L, PC	3 2				

Duration in Semesters	Modu
Frequency	le Informa
Recommended Semester	ation
Module Prerequisites	
Module Type: Required (Req), Required Elective (RE). or Elective (E)	
Module Number/Code	
Module	Courses
Course Title Course Type Cr. Hrs. per Week	
Examination	Examin
Prerequisites [1]	ations
Type of Examination	
Graded	
ECTS Credits	

Students have insights into the development of the universe, linear and nonlinear growth of cosmic structures, the creation of elliptical and spiral galaxies, and observational techniques for observing galaxies.

1	annually, summer semester	first or second	none	RE	PHY-MV-A-E24	Semin	nar on galaxy evolution			none	presentatio n with written paper	yes	3
							Seminar on galaxy evolution	S	2				

Intended learning results:

semester

Students can discuss academic publications on the subject of galaxy creation and development, using material chosen from both theoretical and data-driven papers.

1	every two years, summer semester	first or second	none	RE	PHY-MV-A-E27	Chem	ical Evolution of the Universe			none	written examinatio n or oral examinatio n	yes	5
							Chemical Evolution of the Universe Exercises in Chemical Evolution of the Universe	L, P C	2 2				
Inte Stu	e nded learni dents have i	ing results: insights int	o all astro	physical p	processes relevant to	the che	mical development of the cosmos.						
1	every two years, summer	first or second	none	RE	PHY-MV-A-T01	Comp	utational Astrophysics			none	written examination	yes	6

Module Information	Courses		Examinations
Duration in Semesters Frequency Recommended Semester Module Prerequisites Module Type: Required Elective (RE). or Elective (E) Module Number/Code	Module Course Title	Course Type Cr. Hrs. per Week	Examination Prerequisites [1] Type of Examination Graded ECTS Credits
	Computational Astrophysics Exercises in Computational Astrophysics	L, 3 PC 1	
Intended learning results: Students are able to make targeted use of numerical proce	dures and critically assess the results of computer progra	ms.	
1 every first or none RE PHY-MV- two second years, winter semester	A-T02 Stellar Structure & Evolution		none written yes 6 examinatio n or oral examinatio n
	Stellar Structure & Evolution Exercises in Stellar Structure & Evolution	L, 3 PC 1	
Intended learning results:			
Students know the physical construction of stars and their	development.		
1 every first or very good RE PHY-MV-7 semester second knowledg e of Fortran90 and MPI, proven fundame ntal knowledg	A-T03 Theory and Application of PHOENIX		active oral yes 3 participati examinat on ion

e of PHOENIX

Mod	ule Inform	ation				Courses				Examinatio	ns		
Duration in Semesters	Frequency	Recommended Semester	Module Prerequisites	Module Type: Required (Req), Required Elective (RE). or Elective (E)	Module Number/Code	Module	Course Title	Course Type	Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	Graded	ECTS Credits
							Theory and Application of PHOENIX	L	2				
Inte Stud	n ded learn i ents have a	i ng results: an enhance	d underst	tanding of PH	IOENIX (including	the app	blied methods, algorithms, and program modules) and can apply PHOE	NIX to	simul	ated astrophys	ical problems.		
1	every two years, winter semester	first or second	none	RE	PHY-MV-A-T04	Stella	r and Planetary Atmospheres			none	written examinatio n or oral examinatio n	yes	6
							Stellar and Planetary Atmospheres Exercises in Stellar and Planetary Atmospheres	L, P C	3 1				
Inte Stud	n ded learn i ents under	i ng results: stand the c	onstructi	on of stars a	nd planetary atmo	spheres	s, radiative transfer, the numerical modeling of atmospheres, creation	of spe	ctra, a	nd their critical	interpretation.		
1	every semester	second or third	none	RE	PHY-MV-A-T06	MHD	Simulations with the FLASH Code			successful participati on in exercises	oral examinat ion	yes	3
							MHD Simulations with the FLASH Code	L	2				

Intended learning results: Students know how to work with the FLASH simulation code and applications in the astrophysical field.

Мос	lule Inform	ation				Course	es			Examination	S		
Duration in Semesters	Frequency	Recommended Semester	Module Prerequisites	Module Type: Required (Req), Required Elective (RE). or Elective (E)	Module Number/Code	Module	Course Title	Course Type	Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	Graded	ECTS Credits
1	every two years, winter semester	first or second	none	RE	PHY-MV-A-T10	Inters	tellar Medium and Star Formation			none	written examination or oral examination	yes	6
							Interstellar Medium and Star Formation Exercises in Interstellar Medium and Star Formation	L, P C	3 1				

Students possess fundamental knowledge of the interstellar medium (including the make-up, physical properties, and dynamics) and the creation of stars (including requirements, time scales, thermodynamics, development of protostars, and gas jets).

Students can apply hydrodynamic and magnetic-hydrodynamic equations.

1	every two years, summer semester	first or second	none	RE	PHY-MV-A-T6	Introd	luction to General Relativity and Astrophysical Applications			none	written examination	yes	8
							Exercises in Introduction to General Relativity and Astrophysical	L	4				
								PC	2				

Intended learning results:

Students have a fundamental understanding of the general theory of relativity, understand and can describe curved space in multiple dimensions, and have an understanding of astrophysical phenomena based on . . .

Modu	le Inform	ation				Cours	es			Examination	iS		
Duration in Semesters	Duration in Semesters Frequency Recommended Semester Module Prerequisites Module Type: Required (Req), Required Elective (RE). or Elective (E) Module Number/Code						Course Title	Course Type	Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	Graded	ECTS Credits
Accele	rator and	d elementa	ry particl	e physics									
1 ar	nnually, summer semester	first or second	none	RE	PHY-MV-BE-E02	Accele	erator Physics II			none	written examinatio n or oral examinatio n	yes	5
							Accelerator Physics II L Exercises in Accelerator Physics II F	,)	2 2				
Intend	led learni	ing results:											
Studer energy	nts undei /, lumino	rstand impo sity and be	ortant as am curre	pects of the p nts, creation	planning and develo of high-intensity a	opment nd cohe	t of accelerator facilities: influencing the quality of the beam, methods fo erent X-rays.	or imp	provir	ig beam proper	ies, limitation c:	of attaina	able

		-					-						
1	annually, winter semester	first or second	none	RE	PHY-MV-BE-E05	Exper	mental astroparticle physics			present ation	oral examinat ion	yes	8
							Experimental astroparticle physics Exercises in experimental astroparticle physics	L, P C	4 2				

Students are able to contextualize specific experiments and their results. Students are also able to critically examine how to best interpret measurement results. Students are able to understand how a measurement or observation for a physics question in the field of astroparticle physics is derived.

1	annually, winter semester	first or second	none	RE	PHY-MV-BE-E09	Accele	rator Physics I			none	written examinatio n or oral examinatio n	yes	5
							Accelerator Physics I Exercises in Accelerator Physics I	L, P C	2 2				

Duration in Semesters	Modu
Frequency	e Informa
Recommended Semester	ation
Module Prerequisites	
Module Type: Required (Req), Required Elective (RE). or Elective (E)	
Module Number/Code	
Module	Courses
Course Title	
Cr. Hrs. per Week	
Examination Prerequisites [1]	Examinations
Type of Examination	
Graded	
ECTS Credits	

Students are familiar with the fundamentals of accelerator physics. Students are able to design the basic elements of a simple accelerator and calculate its key parameters.

1 a	annually, summer semester	first or second	none	RE	PHY-MV-BE-T02	Physic	s of the standard model			none	written examination or oral examination	yes	6
							Physics of the standard model Exercises in physics of the standard model	L, P C	3 1				

Intended learning results:

Students are prepared for research projects, such as a master's thesis, in theoretical particle physics with a focus on the standard model particle physics.

1	annually, winter semester	first or second	none	RE	PHY-MV-BE-T03	Introd	uction to Supersymmetry and Supergravity			none	written examination or oral examination	yes	6
							Introduction to Supersymmetry and Supergravity Exercises in Introduction to Supersymmetry and Supergravity	L, P C	3 1				

uration in Semesters	Module
quency	e Informa
ommended Semester	ation
dule Prerequisites	
dule Type: quired (Req), quired Elective). or Elective (E)	
dule Number/Code	
dule	Courses
Jrse Title	
urse Type Hrs. ber Week	
amination erequisites [1]	Examinations
oe of Examination	
ıded	
S Credits	

Students are prepared for a research project, such as a master's thesis or doctoral dissertation, in theoretical particle physics with a focus on supersymmetry and supergravity.

1 annually summe semest	first or r second er	none	RE	PHY-MV-BE-T11	Introd	luction to String Theory			none	written examination or oral examination	yes	5
						Introduction to String Theory Exercises in Introduction to String Theory	L, P C	2 2				

Intended learning results:

Students are prepared for a research project, such as a master's thesis or doctoral dissertation, in string theory.

1	annually, winter semester	first or second	none	RE	PHY-MV-BE-T12	Pheno	omenology of Physics beyond the Standard Model			none	written examination or oral examination	yes	6
							Phenomenology of Physics beyond the Standard Model Exercises in Phenomenology of Physics beyond the Standard Model	L, P C	3 1				

Intended learning results:

Students are prepared for a research project, such as a master's thesis or doctoral dissertation, in theoretical particle physics with a focus on standard model particle physics.

Мо	dule Inform	ation				Cours	es			Examination	s		
Duration in Semesters	Frequency	Recommended Semester	Module Prerequisites	Module Type: Required (Req), Required Elective (RE). or Elective (E)	Module Number/Code	Module	Course Title	Course Type	Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	Graded	ECTS Credits
1	every two years, summer semester	first or second	none	RE	PHY-MV-BE-T22	Quan	tum Chromodynamics (Advanced Topic in Particle Physics)			none	written examinatio n or oral examinatio n	yes	3
Inte Stue Stue	ended learn dents are fa dents are al	ing results: miliar with so able to e	the key c valuate t	haracteristic he challenge	s of quantum chro s of quantitatively	modyn describ	Quantum Chromodynamics (Advanced Topic in Particle Physics) amics in quantum field theory, particularly the role of symmetries and ing the processes for modern particle colliders, particularly the LHC.	L quanti	2 um loo	ps.			
1	every two years, summer semester	first or second	none	RE	PHY-MV-BE-T25	Introd	luction to Conformal Field Theory			none	written examinatio n or oral examinatio n	yes	4
							Introduction to Conformal Field Theory Exercises in Introduction to Conformal Field Theory	L, P C	2 1				
Inte Stu	e nded learn i dents are pr	ing results: repared for a	a researc	h project, suc	h as a master's the	esis or c	loctoral dissertation, in theoretical particle physics with a focus on con	formal	quant	um field theory	<i>ı</i> .		
1	every two years, summer semester	first or second	none	RE	PHY-MV-BE-T29	Comp	uter Algebra and Particle Physics			none	written examinatio n or oral examinatio n	yes	6
							Computer Algebra and Particle Physics Exercises in Computer Algebra and Particle Physics	L, P C	3 1				

ıration in Semesters	Module
uency	Informa
ommended Semester	tion
dule Prerequisites	
dule Type: uired (Req), uired Elective or Elective (F)	
dule Number/Code	
dule	Courses
rse Title	
rse Type	
Hrs. per Week	
amination :requisites [1]	Examinations
e of Examination	
ded	
S Credits	

Students have fundamental knowledge of algorithms relevant to theoretical particle physics and experience using computer algorithm systems.

Biomedical phy	/sics										
1 annually, winter semester	first or second	none	RE	PHY-MV-BP-E01	medical Physics I			none	written examination or oral examination	yes	5
					Biomedical Physics I Journal Club	L, PC	2 2				
Intended learn Students are fa	ing results: miliar with	current m	nedical ir	naging (PET, SPECT, N	ARI, CT, multimodal) and basic radiotherapy techniques.						
1 annually, summer semester	first or second	none	RE	PHY-MV-BP-E02	Biomedical Physics II			none	written examination or oral examination	yes	5
					Biomedical Physics II Journal Club	L, PC	2 2				

Intended learning results:

Students are familiar with structures of macromolecules, cells, and tissues, as well as with key factors of cellular and extracellular biochemistry as they relate to disease, including cancer.

Mo	dule Information						Courses				5		
Duration in Semesters	Frequency	Recommended Semester	Module Prerequisites	Module Type: Required (Req), Required Elective (RE). or Elective (E)	Module Number/Code	Module	Course Title	Course Type	Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	Graded	ECTS Credits
1	annually, winter semester	first or second	none	RE	PHY-MV-BP-E03	Biome	edical Physics III			none	oral examinat ion	yes	3
							Biomedical Physics III	L	2				

Students are familiar with the fundamentals of radiative transfer and its application in radiation therapy and radiation safety. Students also have insight into the role of medical imaging in radiation therapy.

1	annually, summer semester	first or second	none	RE	PHY-MV-BP-E04	Biome	edical Physics IV			none	oral examinat ion	yes	3
							Biomedical Physics IV	L	2				

Intended learning results:

Students are familiar with the fundamentals of the physics of radiation therapy. Students also have an overview of the physical and biological optimization of a radiation plan in the application of a range of radiation techniques and treatment plans for some types of tumors.

1	annually, winter semester	first or second	none	RE	PHY-MV-BP-E05	Semin	nar on Biomedical Physics I			none	present n written paper	tatio with	yes	3
							Seminar on Biomedical Physics I	S	2					

Intended learning results:

Students are familiar with current medical imaging (PET, SPECT, MRI, CT, multimodal) and fundamental techniques of radiotherapy.

	odul
Frequency	e Informa
Recommended Semester	ation
Module Prerequisites	
Module Type: Required (Req), Required Elective (RE). or Elective (E)	
Module Number/Code	
Module	Courses
Course Title Course Type	
Cr. Hrs. per Week	
Examination Prerequisites [1]	Examinations
Type of Examination	
Graded ECTS Credits	

Nanostructure and solid state physics

1 a	innually, summer semester	first or second	none	RE	PHY-MV-FN-E01	Advar	nced Solid State Lecture			none	written examination or oral examination	yes	8
							Advanced Solid State Lecture Exercises in Advanced Solid State Lecture	L, PC	4 2				

Intended learning results:

Students have in-depth knowledge of the latest scientific research in solid state and nanostructure physics. They also possess sufficient in-depth expertise to conduct an experimental master's thesis in the field of solid state and nanostructure physics.

1 annually, winter semester	first or second	none	RE	PHY-MV-FN-E02	Nano	structure Physics I			none	written examination or oral examination	yes	8
						Nanostructure Physics I Exercises in Nanostructure Physics I	L, PC	4 2				

Intended learning results:

Students are able to summarize the main findings on the synthesis of and research into semiconductor nanostructures and devices.

1	annually,	first or	none	RE	PHY-MV-FN-E12	Advanced Methods for Surface and Nanostructure Characterization	none	written	yes	5
	summer	second						examination		
	semester							or oral		
								examination		

Modul	odule Information						Courses				Examinations					
Duration in Semesters	Frequency	Recommended Semester	Module Prerequisites	Module Type: Required (Req), Required Elective (RE). or Elective (E)	Module Number/Code	Module	Course Title	Course Type	Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	pepero	חוממבמ	ECTS Credits		
							Advanced Methods for Surface and Nanostructure Characterization Exercises in Advanced Methods for Surface and Nanostructure Characterization	L PC	2 2							

Students understand a range of methods for the structural and chemical characterization of nanostructures and surfaces. Students are able to make sound decisions when selecting methods for the chemical and structural characterization of nanostructures and surfaces. Students know how use X-ray and electron diffraction methods to characterize the atomic structure of surfaces and nanostructures.

1	annually, winter semester	first or second	none	RE	PHY-MV-FN-E18	Bio-na	ano Interfaces			none	written examination or oral examination	yes	3
							Bio-nano Interfaces	L	2				

Intended learning results:

Students have an overview of the main biophysical interface processes and have fundamental and interdisciplinary knowledge for further lectures and final theses in this interdisciplinary field. After successful completion of the module, students know how cells transmit electronic signals, how ion channels and nanopores work, and what influence interfaces have on protein conformation.

1 annual sumn seme	r, first or er second ter	none	RE	PHY-MV-FN-E23	X-Ray	/ Analytics and Microscopy in Nanoscience			none	term paper	yes	3
						X-Ray Analytics and Microscopy in Nanoscience	L	2				

Duration in Semesters	Modu
equency	e Informa
ecommended Semester	ation
odule Prerequisites	
lodule Type: equired (Req), equired Elective F1. or Flertive (F1	
iodule Number/Code	
lodule	Courses
ourse Title	
ourse Type	
r. Hrs. per Week	
xamination rerequisites [1]	Examinations
pe of Examination	
raded	
CTS Credits	

Intended learning results: Students are able to summarize the main current X-ray analysis and X-ray microscopic methods for the examination of functional nanomaterials.

1	annually, winter semester	first or second	none	RE	PHY-MV-FN-E33	Mode	rn Scattering Methods in Nanomaterial Science			none	presentat n w written paper	tio vith	yes	5
							Modern Scattering Methods in Nanomaterial Science Sample Preparations and Synchrotron Experiments, Data Analysis	L P C	1 2 2					

Intended learning results:

Students know the theoretical background behind and have practical experience with synchrotron radiation X-ray diffraction techniques used for characterizing nanoparticles.

1	annually, summer semester	first or second	none	RE	PHY-MV-FN-E34	Metho	ods in nanobiotechnology II			none	presentation (50%) and oral examination (50%)	yes	7
							Methods in Nanobiotechnology II Exercises in methods in nanobiotechnology II Practical: Methods in nanobiotechnology II	L, P C , P	2 2 2				

Intended learning results:

Students know the modern methods and elements of nanobiotechnology and are prepared for scientific work in this subject.

Mo	dule Inform	ation				Cours	ies			Examination	s		
Duration in Semesters	Frequency	Recommended Semester	Module Prerequisites	Module type: Required (Req), Required Elective (RE). or Elective (E)	Module Number/Code	Module	Course Title	Course Type	Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	Graded	ECTS Credits
1	annually, summer semester	first or second	none	RE	PHY-MV-FN-E35	Funda	amentals of Photovoltaics			none	written paper	yes	3
Inte Stud	e nded learni dents know	ng results: the concep	t of photo	ovoltaic ener	gy generation and	are pre	Fundamental Photovoltaics epared for scientific work in this subject.	L	2				
1	annually, summer semester	first or second	none	RE	PHY-MV-FN-E36	Comp	lex Materials			PCom	presentatio n with written paper	yes	6
							Complex Materials Project	L PCom	3 2				
Inte Stud	nded learni dents know	ng results: the theoret	ical back	ground and l	have practical expe	erience	with complex materials.						
1	annually, winter semester	first or second	none	RE	PHY-MV-FN-E39	Metho	ods in Nanobiotechnology I			none	presentation (50%) and oral examination (50%)	yes	7
							Methods in Nanobiotechnology I Exercises in Methods in Nanobiotechnology I Practical: Methods in Nanobiotechnology I	L, P C , P	2 2 2				

Intended learning results: Students are familiar with the modern methods and elements of nanobiotechnology and are prepared for scientific work in this subject.

Mod	ule Inform	ation				Course	es			Examination	s		
Duration in Semesters	Frequency	Recommended Semester	Module Prerequisites	Module Type: Required (Req), Required Elective (RE). or Elective (E)	Module Number/Code	Module	Course Title	Course Type	Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	Graded	ECTS Credits
1	every two years, summer semester	first or second	none	RE	PHY-MV-FN-T13	Nonec	quilibrium Statistics and Transport Theory			none	written examinatio n or oral examinatio n	yes	8
							Nonequilibrium Statistics and Transport Theory Exercises in Nonequilibrium Statistics and Transport Theory	L, P C	4 2				

Students know the modern concepts of the quantum statistics of nonequilibrium systems and quantum transport theory and are prepared for scientific work in this field.

1	every semester	first or second	none	RE	PHY-MV-FN-T17	Semin	nar on Selected Topics of the Quantum Theory of Condensed Matter			none	presen n written paper	ntatio with	yes	3
							Seminar on Selected Topics of the Quantum Theory of Condensed Matter	S	2					

Intended learning results:

Students have insight into modern subjects and methods in the theory of condensed matter. Students know how to combine knowledge from contemporary scientific publications and to reproduce a scientific presentation. Students have in-depth knowledge of a selected current issue in the theory of condensed material and can actively participate in scientific discussions.

1	every semester	first or second	none	RE	PHY-MV-FN-T18	Semin	ar on Many-Body Theory and Quantum-Statistical Methods			none	presentatio n with written paper	yes	3
							Seminar on Many-Body Theory and Quantum-Statistical Methods	S	2				

uration in Semesters	Modul
equency	e Informa
commended Semester	ation
odule Prerequisites	
odule Type: :quired (Req), :quired Elective El. or Elective (E)	
odule Number/Code	
odule	Courses
ourse Title	
urse Type	
. Hrs. per Week amination erequisites [1]	Examinati
pe of Examination	ons
aded	
TS Credits	

Students are able to discuss current physics problems in the field of many-body theory and quantum-statistical methods and to develop and present a specialized topic.

1	every semester	first or second	none	RE	PHY-MV-FN-T19	Seminar on Quantum Dynamics of Nonequilibrium Nano-Systems	none	presentatio n with written paper	yes	3
						Seminar on Quantum Dynamics of Nonequilibrium NanoSystems S 2				

Intended learning results:

Students know the modern concepts in the field of quantum statistics of nonequilibrium systems and quantum transport theory and are prepared for scientific work in this field.

1	every two years, summer semester	first or second	none	RE	PHY-MV-FN-T24	Quant	um Statistics with Path Integrals			none	written examinatio n or oral examinatio n	yes	8
							Quantum Statistics with Path Integrals Exercises in Quantum Statistics with Path Integrals	L, P C	4 2				

Intended learning results:

Students know current methods in the field of path integrals for quantum many-body systems and are prepared to conduct scientific work in the field.

1	every two	first or second	none	RE	PHY-MV-FN-T25	Symmetry Groups in Physics	none	written examinatio	yes	8
	years,							n or oral		
	summer							examinatio		
	semester							n		

Module Informa	ation				Course	es				Examination	IS		
Duration in Semesters Frequency	Recommended Semester	Module Prerequisites	Module Type: Required (Req), Required Elective (RE). or Flective (E)	Module Number/Code	Module	Course Title		Course Type	Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	Graded	ECTS Credits
						Symmetry Groups in Physics Exercises in Symmetry Groups in Physics	L, P C		4 2				
Intended learnin	ng results:												
Students know 1	the fundame	ental tool	ls of group th	eory and can apply	group	heory concepts to basic topics of theoretical physics.							
1 annually, summer semester	first or second	none	RE	PHY-MV-FN-T28	Conde	nsed Matter Theory: Special Topics				none	written examination or oral examination	yes	8
						Condensed Matter Theory: Special Topics Exercises in Condensed Matter Theory: Special Topics	L, P C		4 2				

Students have insight into recent issues and experience in dealing with specialized methods for the theory of condensed matter in the context of current research.

Laser physics a	ina photon so	cience									
1 annually winter semest	first or second er	none	RE	PHY-MV-LP-E11	Ultrafast Optical Physics I			none	oral examinat ion	yes	5
					Ultrafast Optical Physics I Exercises in Ultrafast Optical Physics I	L, P C	2 2				

Intended learning results:

Students possess a fundamental knowledge of the description of ultrashort optical pulses, their generation, manipulation, diagnostics, and application in modern nonlinear optics and optical spectroscopy processes.

Madula Information	Contract	Evaminations
module mornation	Courses	Examinations
Duration in Semesters Frequency Recommended Semester Module Prerequisites Module Type: Required Elective (RE). or Elective (E) Module Number/Code	Module Course Title Course Type Cr. Hrs. per Week	Examination Prerequisites [1] Type of Examination Graded ECTS Credits
1 annually, first or none RE PHY-MV-LP-E16 winter second semester	Modern Molecular Physics	none written yes 4 examination or oral examination
	Modern Molecular PhysicsL,2Exercises in Modern Molecular PhysicsPC1	

Students are familiar with the fundamental concepts of modern experiments in molecular physics. Students have a detailed understanding of atoms and molecules and their interactions with external fields and other particles as well as an understanding of experimental concepts in molecular physics.

1 annually, summer semester	first or second	none	RE	PHY-MV-LP-E21	Ultra	fast Optical Physics II		none	written examination or oral examination	yes	6
						Ultrafast Optical Physics IIL,Exercises in Ultrafast Optical Physics IIPC	3 1				

Intended learning results:

Students have advanced knowledge in the field of ultrashort pulse generation, amplification, and manipulation and their application to spectroscopy, meteorology, and attosecond sciences. Students are able to quantitatively model and analyze ultrashort laser pulse oscillators and amplifiers as well as pulse propagation in linear and nonlinear media.

1	annually,	first or	none	RE	PHY-MV-LP-E22	Light-Matter Interactions: Atoms, Molecules & (Non)Linear Optics	none	written	yes	4
	summer	second						examination		
	semester							or oral		
								examination		

Module Information						Courses			Examinations					
Duration in Semesters	Frequency	Recommended Semester	Module Prerequisites	Module Type: Required (Req), Required Elective (RE). or Elective (E)	Module Number/Code	Module	Course Title	Course Type	Cr. Hrs. per Week	Examination Prerequisites [1]	Type of Examination	Graded	2	ECTS Credits
							Light-Matter Interactions: Atoms, Molecules & (Non)Linear Optics Exercises in Light-Matter Interactions: Atoms, Molecules & (Non)Linear Optics	L PC	2 1					

Students are familiar with beam lifetimes, linewidths, polarization, and methods for their measurement (spectrometer, detectors, TCSPC, etc.) and have an understanding of various broadening mechanisms (pressure, Doppler, duration, etc.)

1 annually winter semest	first or second er	none	RE	PHY-MV-LP-E27	Nonlir	near Optics			none	written examination or oral examination	yes	6
						Nonlinear Optics Exercises in Nonlinear Optics	L, P C	3 1				

Intended learning results:

Students are familiar with the most important nonlinear optical processes. Students are able to simulate and design frequency conversion units, ultrafast parametric optical amplifiers, and measuring techniques based on nonlinear optical processes.

1 annually, first or none summer second semester	e RE PHY-MV-LP	9 New Experiments with XFEL Sources		none written examination or oral examination	yes	4
		New Experiments with XFEL Sources Exercises in New Experiments with XFEL Sources	L, 2 P 1 C			

ation in Semesters	Module I
ncy	Informatio
mended Semester	on
e Prerequisites	
e Type: ed (Req), ed Elective ·Elective (E)	
e Number/Code	
a	Courses
Title	
Type	
, per Week	
ination micites [1]	Examinations
f Examination	
_	
redits	

Students are able to better understand XFEL publications and develop their own ideas for conducting XFEL experiments.

1	every semester	first or second	none	RE	PHY-MV-LP-T02	Semin	ar: Many-Body Theory of Ultracold Atoms and Solid State Systems			none	present n written paper	atio with	ye s	3
							Seminar: Many-Body Theory of Ultracold Atoms and Solid State Systems	S	2					

Intended learning results:

Students have the expertise to present a lecture on a topic in modern atomic physics, solid-state physics, or quantum optics.

e tv y s	very wo ears, ummer emester	first or second	none	RE	PHY-MV-LP-T03	Theor	y of Photon-Matter Interactions			none	written examination (60%) and written paper (40%)	ye s	8
							Theory of Photon-Matter Interactions Exercises in Theory of Photon-Matter Interactions Seminar on Theory of Photon-Matter Interactions	L, P C , S	2 2 2				

Duration in Semesters	Modu
Frequency	le Informa
Recommended Semester	ation
Module Prerequisites	
Module Type: Required (Req), Required Elective (RE), or Elective (E)	
Module Number/Code	
Module	Courses
Course Title Course Type	
Cr. Hrs. per Week	
Examination Prerequisites [1]	Examinations
Type of Examination	
Graded	
ECTS Credits	

Students can develop a precise quantum mechanical description for photon-matter interactions relevant to practical situations. Students have a conceptual and quantitative understanding of experiments focusing on the behavior of electrons in electromagnetic fields. This includes experiments with optical lasers as well as with X-ray sources.

Elective area (12	2 ECTS credits)						
1 every semester	first or second	E	Elective area		Final Module Examination	ye s	12
				L, PC, S or laboratory course			
Intended learni There are no re collaboration sl	ng results: strictions on the c kills.	hoice of subject. Students sh	nould follow their inclinations and int	erests. Students have basic insights into a subject area of the	eir choice and interdisciplinary		

[1] PCC: practical course completion; LCC: laboratory course completion; SC: seminar completion; PW project work