China's new Labour Contract Law: No harm to employment?

Yu-Fu CHEN⁵, Michael FUNKE⁶,*

⁵ Economic Studies, School of Social and Environmental Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom
⁶ Department of Economics, Hamburg University, Von-Melle-Park 5, 20146 Hamburg, Germany

A R T I C L E I N F O

Article history:
Received 8 October 2008
Received in revised form 27 February 2009
Accepted 20 March 2009

JEL classification:
C61
D81
D92
J23

Keywords:
China
Labour Contract Law
Real options
Employment

A B S T R A C T

In January 2008, China adopted a new labour contract law. This new law represents the most significant reform to the legislation on employment relations in mainland China in more than a decade. The paper provides a theoretical framework on the inter-linkages between labour market regulation, option value and the choice and timing of employment. All in all, the paper demonstrates that the Labour Contract Law in its own right will have only small impacts upon employment in the fast-growing Chinese economy. Rather, possibly induced increasing unit labour costs may adversely affect employment.

J043-951X/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.chieco.2009.03.008

1. Introduction

Although China has made awe-inspiring progress in economic development and growth, it is facing formidable employment challenges while moving toward a knowledge- and service-based economy and further opening up to international competition after its WTO accession. One of China's biggest challenges during the transition is how to create 100–300 million new jobs in the coming decade to absorb the millions of laid-off workers from state-owned firms, rural migrant workers and newly added labour force.

Furthermore, it is quite obvious that Chinese workers and their families have lost the job security and social welfare that they enjoyed for decades before the reform era. It may not have been much, but it was a safety net. That is gone. This is one of the root causes of the kinds of protests that have developed in China: extreme social insecurity.¹ As a response to the protests, the government has announced that it wants to bring in policies aimed at restoring a more harmonious society. There is an apparent shift underway in government perception that something has to be done. China's new Labour Contract Law, which became effective on 1 January 2008, can be considered as being part of the attempt to grapple with this issue.²

The new Labour Contract Law has stirred up a great deal of controversy among economists and has raised concerns about the sustainability of China's economic growth.³ They view the law as the twilight of the age of cheap labour in China, undermining the
country's most prized comparative advantage. Using more moderate language, the American Chamber of Commerce in China has filed lengthy objections to the reforms with the legislature, insisting that the improvements designed to protect workers from casualisation and arbitrary firings will raise costs for employers by raising requirements for severance pay. The worry is that the new Labour Contract Law will adversely impact the country's economy at a time when export-oriented enterprises, especially labour-intensive firms, already encounter increasing difficulties in their operations, due to factors such as the appreciation of the renminbi, the rise in wages and production costs and declining demand for Chinese products worldwide. Despite this ongoing contention and dispute, the new regulation has so far been absent from economic research radar screens.

Against this background, this paper looks at the transmission from structural reforms in labour markets to employment outcomes. Its main contribution is the use of a real options framework to identify employment effects. While it is certainly not a pioneer in applying a real option model to labour demand, it is to our knowledge the first to formalise the new Chinese policy framework and to investigate its dynamics.

The central question posed in this paper is to what extent China's new Labour Contract Law has affected labour demand and employment. Despite a large volume of research, much controversy remains over the impact of employment protection legislation on labour market performance. Employment protection serves a useful purpose in securing workers against job loss. However, serious concerns remain about the potential negative impact of stringent statutory employment protection. On balance, the evidence suggests that stringent employment protection legislation is associated with lower employment levels, but some commentators have also argued that it leads to higher structural unemployment. On the other hand, it is reasonably well established that employment protection reduces turnover in and out of unemployment. Moreover, employment protection legislation may strengthen the hand of insiders in wage bargaining, adversely affecting the wage-setting schedule and employment outcome.

The paper is organised as follows. The purpose of section 2 is to review the main elements of the new Chinese Labour Contract Law. Section 3 presents the theoretical framework showing a nexus between labour market regulation and employment. Section 4 illustrates the potential impacts of the new legal framework using model simulations for different scenarios. This allows us to develop a feel for the model and to draw a map of the factor demand sensitivity to various structural characteristics of the environment in which Chinese firms operate. Section 5 provides some concluding remarks. An Appendix at the end of the paper includes some proofs and technical derivations which are rather involved. Readers who are not interested in the nuts and bolts of the derivations can skip the Appendix without losing the main argument of the paper.

2. The new Chinese Labour Contract Law

The Labour Contract Law was enacted by the Standing Committee of the National People's Congress on 29 June 2007 and became effective on 1 January 2008. The purposes of the new Labour Contract Law are to perfect the labour contract system, clarify the rights and obligations of the parties, protect employees' lawful interests and establish or strengthen stable labour relations. Written labour contracts are the mechanism for doing so.

Other provisions will, however, place more burdens on employers in general, including pressure to engage in collective bargaining over many issues and to consult workers on work-related issues such as compensation, work hours, leave, occupational safety and health, insurance and fringe benefits, training, discipline and performance norms. The requirement to listen to the unions' opinions strengthens the say of labour in business decisions. Some companies responded by forming in-house workers' groups, but the All-China Federation of Trade Unions (ACFTU) objected, claiming that this amounted to the creation of an alternative labour union, and was thus illegal. Instead the ACFTU has used the new law as the basis for a huge registration drive and unrelenting pressure is applied to firms to sign up with the government-affiliated monopoly union. The stated goal is to have unions in all of China's private firms by 2010.

The basic rules of employment relationships have also been changed by the new law in several important respects. Probationary periods for new workers have been shortened to a maximum of 2 months (1 month for employment terms of less than a year) from the current 6 months, unless the term is at least 3 years or without a fixed term, in which case 6 months is permissible. Moreover, the minimum salary during the probationary period is 80% of the starting salary for regular workers in the same position. Non-compete provisions restricting an employee's post-employment options remain legally compliant, but the

4 For an overview discussion of the relationship between labour market institutions and economic performance in terms of unemployment and growth, see Addison and Teixeira (2003) and Nickell and Layard (1999).

5 The model below deals with employment protection and labour demand. It is well known that employment protection can be justified on the grounds that workers are risk-averse and that they do not have the possibility to privately purchase unemployment insurance (see Bertola, 2004).

7 The legislation was finalised parallel to the public furore in June 2007 over slave labour conditions in the brick industry in the province of Shanxi. The investigations revealed that rural migrant workers, many of them teenagers, were being kidnapped, sold to brick factories operating without licenses and forced to work up to 18 h a day for no pay.

8 Written contracts were already required under the previous labour contract law (1994), but this requirement was often disregarded, particularly in casual employment industries like construction, where migrant workers have often been mistreated and deprived of promised compensation. Party-run courts often fail to enforce their legal rights. This underpins that reforms of legislation are less effective if the legal system is not efficient enough to actually enforce the reforms.

9 For example, in a reflection of just how difficult business conditions in China are, Wal-Mart has recently signed a collective-bargaining agreement with the ACFTU. By contrast, firms that resist doing the same will be blacklisted and face the risk of being subject to endless audits, tax examinations and accusations of employment contract law violations.
maximum term is 2 years — 1 year shorter than the 3 years now generally allowed in China — and they are restricted to senior managers, senior technical personnel and other personnel with confidentiality obligations.

Employers contemplating a reduction in force of 20 or more employees or 10% or more of the workforce are allowed to do so in the context of a bankruptcy restructuring, severe production difficulties or a change of production, technology or business form, but must give the union or all workers at least 30 days' advance notice. Mass firings because of labour problems are therefore impermissible.

Among the biggest changes are new termination provisions. Business associations sought to reduce firing costs, whereas unions pushed for job security and compensation in the event of dismissals. The previous labour contract law had allowed workers to be hired in a series of fixed-term contracts, thereby allowing either party to terminate an employment relationship without penalty or severance pay by simply letting the contract expire. One key provision of the new Labour Contract Law is that workers who have been employed at the same enterprise for 10 years or more will be legally entitled to an "open-ended" labour contract, which should guarantee them adequate financial compensation should they be made redundant (1 month of base salary per year of employment up to a maximum of 12 months for 12 years).10 Where severance is required, it is based on the employee’s income for the 12-month period immediately preceding the date of termination (and "income" includes the base salary as well as any bonus, subsidy, allowance, commission, etc., paid to the worker).

Under the new Labour Contract Law, the maximum number of fixed-term contracts is two. Afterwards the fixed-term contract is subject to a conversion requirement. Employees who have accumulated at least 15 consecutive years of service and who are within 5 years of retirement age (50 for men, 55 for women in general; 5 years younger in physical occupations) are protected from termination because of a deterioration in capability or a reduction in force by the employer. Temporary employees paid on an hourly basis will be treated as regular employees if they work more than 24 h a week. Finally, the new Labour Contract Law offers another pathway from temporary to permanent work. Chinese companies often employ a large number of temporary workers hired through temporary work agencies. Temporary work encourages management to avoid the protections and commitment that come with standard employment. Under the new law, temporary work agency workers would become permanent employees after 1 year of employment at a client firm, thus reducing the number of insecure, contingent jobs.

Having described the new Chinese labour regulations, we next model the behaviour of private firms.11 We are interested in the way in which firms adapt their behaviour to the constraints of labour regulations and to what extent the new Chinese Labour Contract Law is an obstacle to employment.

3. Setting the stage: modelling firms’ behaviour

Recent theoretical analyses of factor demand under uncertainty have highlighted the effects of irreversibility in generating real options. In these models the interaction of time-varying uncertainty and irreversibility leads to a range of inaction where factor demand is zero as the firm prefers to wait and see rather than undertaking a costly action with uncertain consequences. Indeed, waiting allows firms to gather new information on the uncertain future. Applying the real option theory to the case of labour demand derives from the fact that hiring and/or firing decisions are rarely now-or-never decisions. In most cases, it is feasible to delay action and wait for new information.

Previous applications of the real options framework to labour demand decisions have arrived at several conclusions. (a) Firing costs stabilise employment in downturns but also lead employers to refrain from hiring in upturns for a constant wage pattern. Hence, more stringent employment protection legislation should be associated with smoother dynamic employment patterns; (b) since employment protection legislation has contrasting effects on employers’ propensity to hire and fire, its net effect upon employment levels is a priori ambiguous. It may increase or decrease average employment. However, a general insight holds true: since higher turnover costs reduce both hiring and firing, their effect on average employment levels over periods when both hiring and firing occur is an order of magnitude lower than that on hiring and firing separately; (c) To the extent that firing costs prevent dissolution of existing employment relationships, sharp employment reduction is less likely in countries with stringent job security provisions. At times when employment would increase in the absence of employment protection, however, employers are less inclined to hire when they fear that future firing costs shall make it difficult to reverse current decisions. Hence, stringent employment protection reduces job creation as well as job destruction, and results in smoother employment dynamics.12

10 Several employers have panicked on learning of the unlimited labour contract provision and have sought loopholes in the new Labour Contract Law. The most noted example of this tactic was the move by Huawei — the former state-owned enterprise and now privately owned telecommunications conglomerate based in Shenzhen — to persuade about 7000 employees who had been with the company for more than eight years to resign. In return, the employees received a lump sum of one month's salary for every year of employment, plus one additional month's salary, and were allowed to rejoin the company on a short-term contract. The generosity of the provision may be explained in part by the inadequacy of government-provided unemployment benefits in China. Several other firms also used this loophole.

11 Chinese industry comprises a number of different forms of firms ranging from foreign companies to state-owned enterprises. The degree to which these might approximate a competitive firm presumably varies with the type of organization. One should be aware that state-owned firms may show less concern for employment regulations than those that are completely private. Larger employment adjustments in state-owned firms often involve generous packages transferring, at least partially, the adjustment costs to taxpayers.

12 Such issues are studied in detail by Bertola and Bertola (1990) and Bertola (1990, 1992), who find that average employment effects are indeed small and of ambiguous sign in reasonable parameterisations of dynamic labour demand problems. Although an established literature exists on labour demand under uncertainty using real options models, this is not true for the transition economies. The approach tentatively adopted here is therefore to draw upon the former while considering certain modifications to allow for Chinese realities.
In summary, existing real option models suggest that employment protection legislation has an ambiguous effect on average labour demand since it increases the incentives to both hire and fire workers.13 Thus, whether employment protection legislation is good or bad for employment is country-specific and depends on such subtle features of formal models as the size of parameters, the persistence of labour demand fluctuations and the general institutional environment. Against this background, we therefore develop a real options model with a rich specification of adjustment costs. Empirical counterparts to the variables outlined in this section are discussed in section 4.14

It is assumed that a representative firm has the following Cobb–Douglas production function

\[Y = AK^{\alpha}L^{1-\alpha}, \quad 0 < \alpha < 1, \]

where \(Y \) denotes real output, \(\alpha \) is the distribution parameters, \(L \) is the number of employees subject to changes due to hiring, firing and/or natural attrition, \(K \) is the constant level of the capital stock, and \(A \) is the labour productivity growing at a rate of \(\eta_{\alpha} \).15 We further assume that the firm faces an isoelastic demand function:

\[p = Y^{(1-\psi)/\psi}Z, \quad \psi \geq 1, \]

where \(p \) represents the price, \(Z \) denotes the demand shock, and \(\psi \) is an elasticity parameter that takes its minimum value of 1 under perfect competition (see Abel & Eberly, 1994). Therefore, current profits, measured in units of output, are defined as

\[\Pi = ZA^{1/2}K^{1/2}L^{1/2} - w(1 + \tau)L - C(L), \]

where real wage, \(w \), is assumed to grow deterministically at a constant rate \(\eta_{w} \). \(\tau \) denotes non-wage labour costs, and \(L \) represents gross changes of employment due to hiring and firing — positive \(L \) denotes hiring and negative \(L \) firing — and \(C \) denotes the total costs of hiring and firing, consisting of a fixed and variable component

\[C(L) = \begin{cases} c_{h} + p_{h}L + \frac{1}{2}\gamma_{h}L^{2} & \text{for } L > 0, \\ 0 & \text{for } L = 0, \\ c_{f} - p_{f}L + \frac{1}{2}\gamma_{f}L^{2} & \text{for } L < 0. \end{cases} \]

When the firm hires (fires) workers, it pays a fixed cost \(c_{h} (c_{f}) \) and positive unit costs of hiring (firing) which may rise with the number of workers hired (fired), \(p_{h} + 1/2\gamma_{h}L^{2} \) (or \(-p_{f}L - 1/2\gamma_{f}L^{2} \)), respectively. Note that \(-p_{f}L > 0 \) for firing since \(L < 0 \) in this case. The coefficients \(c_{h,f} \) denote the fixed costs whenever the firm decides to hire or fire; the fixed costs are usually related to advertising, the screening process, and so on; the fixed costs for firing are related to legal consultations, disputes about firing, and the trade union’s cooperativeness. The parameters \(p_{h} \) and \(p_{f} \) refer to the unit costs of hiring and firing respectively. The parameters \(\gamma_{h} \) and \(\gamma_{f} \) control variations in the speed of employment adjustment due to hiring and firing regulations. All parameters in Eq. (4) are positive.16 The net employment changes over time for the firm are denoted by hiring/firing minus quits

\[\frac{dL}{dt} = I - \lambda L, \]

where \(\lambda \) denotes the constant quit rate per unit time. The representative risk-neutral firm maximises its discounted flow of profits:

\[V = \max_{L} \mathbb{E} \left[\int_{0}^{\infty} \left[Z_{t}A^{1/2}K^{1/2}L^{1/2} - w_{t}(1 + \tau)L_{t} - C(L_{t}) \right] e^{-r t} Z_\Theta = Z, L_0 = L, \Lambda_0 = \Lambda, w_0 = w \right], \]

where \(\mathbb{E}[\cdot] \) denotes the expectation operator given the information set available to the firm at period \(t = 0 \), and \(r \) is the constant required rate of return. The intertemporal objective function implies that firms form expectations and beliefs based on the future behaviour of the driving economic variables, which cannot be predicted with certainty. The modelling framework has to account for this challenge and has to formalise this issue in a coherent framework. This notion is formalised by assuming that the stochastic demand factor \(Z \) follows a geometric Brownian motion

\[dZ_{t} = \nu Z_{t}dt + \sigma Z_{t}dW_{t}, \]

13 There could also be efficiency considerations to the extent that hiring and firing regulations and slower employment adjustment lead to long-lasting work relationships that encourage firms’ investment in the human capital of their workers, thus promoting productivity improvements.

14 In this paper we consider labour market regulations as given, treating them as exogenous. In contrast, a new branch of research treats these/such regulations as endogenous and attempts to better understand their formation. One view is that regulations are shaped by the political power of political groups (Acemoglu, Johnson, & Robinson, 2005). Hence specific regulations are developed to facilitate the appropriation of existing rents by certain groups. The second view is that regulations are rent-creating institutions arising from redistributive conflicts (Saint-Paul, 2000).

15 For the sake of simplicity, we have used a Cobb-Douglas production function restricting the elasticity of substitution to unity. For a real options model with a constant elasticity of the substitution (CES) production function, see Chen and Funke (2004). Note that the production function methodology assumes that firms operate on the production frontier, whereas in reality Chinese firms may be operating below the production frontier during the transition.

16 Following the standard modelling approach, we assume that other factors can be adjusted instantaneously and without costs. Optimal stopping models with interrelated factor demand decisions are analysed in Chen and Funke (2008), Eberly and van Mieghem (1997) and Dixit (1997).
where \(W \) is a Wiener process, \(dW_t = \xi_t \sqrt{dt} \) (since \(\xi_t \) is a normally distributed random variable with a mean of zero and a standard deviation of unity with no serial correlation due to the assumption of independent increments of the Wiener process), \(\eta \) is the deterministic drift term and \(\sigma \) is the variance parameter.

Using Itô's Lemma, we can obtain the corresponding Bellman equation for the value \(V \) and the conditions in which the firm hires (fires) a marginal worker (see Appendix A for details.) It should be evident that the hiring and firing policy of the optimising firm is discontinuous. In some periods the optimal strategy of the firm will be to adjust the number of workers. Under other demand conditions a wait-and-see attitude will be chosen. More specifically, hiring and firing costs generate a corridor of inaction (status quo policy) within which firms do not change their workforce. This region is identified by the higher, \(Z_H \), and lower, \(Z_L \), control barriers. The definitions of the hiring and firing barriers, \(Z_H \) and \(Z_L \), are given by the smooth-pasting and value-matching conditions below. According to the value-matching conditions, the firm would find it optimal to exercise its option to hire or fire the marginal worker once \(Z \) hits one of the two barriers \(Z_H \) and \(Z_L \).

\[
\frac{1 - \alpha}{\varphi} Z_H A \Lambda L^{1-\alpha} - \frac{1 - \beta}{\varphi} = \frac{1}{r + \alpha(1 - \alpha) - \eta - \psi} - \frac{w(1 + \tau)}{r + \lambda - \eta_w} + A_2 \left(Z_H A \Lambda L^{1-\alpha} \right)^{\beta_2} = H + A_1 \left(Z_H A \Lambda L^{1-\alpha} \right)^{\beta_1},
\]

and

\[
- \frac{1 - \alpha}{\varphi} Z_L A \Lambda L^{1-\alpha} - \frac{1 - \beta}{\varphi} = \frac{1}{r + \alpha(1 - \alpha) - \eta - \psi} - \frac{w(1 + \tau)}{r + \lambda - \eta_w} + A_1 \left(Z_L A \Lambda L^{1-\alpha} \right)^{\beta_1} = F + A_2 \left(Z_L A \Lambda L^{1-\alpha} \right)^{\beta_2}.
\]

where \(H = p_0 + \sqrt{2 \sigma \gamma} \) denotes the effective hiring-cost, depending on the fixed costs, unit costs and adjustment speed costs of hiring; \(F = p_f + \sqrt{2 \sigma \gamma} \) is the effective firing-cost. In the inaction area, the firm does nothing and the number of employees only falls due to quits. The magnitudes of \(H \) and \(F \) are positive functions of fixed costs \((c_{fi,fj}) \), unit costs of hiring and firing \((p_{fi,fj}) \) and the adjustment costs \((\gamma_{fi,fj}) \).

The left-hand side of (8) has the marginal benefit of hiring, which includes the acquired firing option. The right-hand side has the marginal cost of hiring, which includes the sacrificed hiring option. Similarly for Eq. (9), the left-hand side has the marginal benefit and the right-hand side the marginal cost of firing. There are four unknown variables, \(Y_H, Y_F, A_1, \) and \(A_2 \), in Eqs. (8) and (9). The smooth-pasting conditions ensure that hiring (firing) is optimal neither before nor after the hiring (firing) threshold is reached. In technical terms, this means

\[
\frac{1 - \alpha}{\varphi} A \Lambda L^{1-\alpha} - \frac{1 - \beta}{\varphi} + \beta_2 A_2 \left(A \Lambda L^{1-\alpha} \right)^{\beta_2} Z_H^{\beta_1} - 1 = \beta_1 A_1 \left(A \Lambda L^{1-\alpha} \right)^{\beta_1} Z_H^{\beta_1} - 1
\]

and

\[
- \frac{1 - \alpha}{\varphi} A \Lambda L^{1-\alpha} - \frac{1 - \beta}{\varphi} + \beta_1 A_1 \left(A \Lambda L^{1-\alpha} \right)^{\beta_1} Z_L^{\beta_2} - 1 = \beta_2 A_2 \left(A \Lambda L^{1-\alpha} \right)^{\beta_2} Z_L^{\beta_2} - 1.
\]

To determine the optimal labour demand policy of the firm, one needs to identify the no-action-zone. This involves calculating the optimal upper and lower control barriers as functions of the parameters of the model. There are no closed-form solutions to the non-linear system of Eqs. (8)–(11) with unknown parameters \(Z_H, Z_L, A_1, \) and \(A_2 \), but they can be solved numerically once the solutions for \(\beta_1 \) and \(\beta_2 \) are obtained from (A16) in Appendix A. This allows calibrations of the model and makes the model amenable to graphical analysis.

4. The new Chinese labour law and employment: illustrative model simulations

The preceding section has laid out the model economy. Having illustrated that the stochastic framework has important ramifications for the dynamic behaviour of employment, we proceed in this section to use the theoretical framework above to carry out a number of calibrations shedding light on the workings of the models and the economic forces at work. For this reason, the model is calibrated in order to match characteristics of the Chinese economy, i.e. we rely on structural parameter values found in the empirical literature. The use of consensus estimates ensures that the calibration is based on the best up-to-date knowledge in the literature. In this way, applied economic modelling is likely to increase the credibility of the policy analysis. While it is not possible to quantify the values of some parameters, economic common sense is used to make sure that the implication of such choices is not far away from reality.\(^{17}\)

We interpret time \((t)\) as years and annual rates are used where applicable. Our base parameters are \(\sigma = 0.2, r = 0.12, \delta = 0.05, \eta = 0.08, \eta_y = 0.06, \alpha = 0.59, \) and \(\psi = 1.2 \). The drift term \(\eta = 0.08 \) reflects the notable growth of the Chinese economy over time. The profit share (wage share) is assumed to be 0.59 (0.41) and labour productivity growth is assumed to be 6% per year.\(^{18}\)

\(^{17}\) Note that the goal of this paper is not to derive precise quantitative estimates of the impact of various labour market regulations, but rather to illustrate the qualitative predictions of our stylised model and to identify key features of the framework in determining the policy's quantitative impact. Jensen (2002) refers to “compromise values” when choosing benchmark parameters that appear plausible for empirical studies.

exports mainly face competitive markets with rather elastic demand, and as a result most Chinese producers are price takers to some extent.19 Furthermore, structural reforms on Chinese product markets have covered a wide range of areas such as the privatisation policy, regulatory reform, and fostering competition from abroad. The immediate impact of such reforms facilitating the entry of new competitors typically concerns allocative efficiency. We therefore assume $\psi = 1.2$. The required rate of return is based on the firm’s cost of capital, plus a risk premium to reflect the project’s specific risk characteristics. The proper estimation of r therefore hinges on determining how market participants value risk-return opportunities given existing alternatives. In our baseline scenario we assume $r = 0.12$.20 The initial values of capital, employment, productivity, and wages are all normalised as 1, i.e. $K = 1$, $L = L_0 = 1$, $A = A_0 = 1$, and $w = w_0 = 1$.

A number of different proxies for employment rigidity have been used in the literature, none of which has emerged as a clear favourite. Clearly, the design of labour market institutions is multifaceted and often of a highly qualitative nature, which is not easily captured in quantitative measures. Our employment protection parameters are drawn from the World Bank Doing Business Database, which provides detailed cross-country information on the \textit{de jure} labour legislation in 178 countries around the world, using a standard methodology for all of them.21 The rigidity of employment index is a synthetic indicator of the stringency of employment protection, summarising different interrelated aspects of the legislation.22 In addition, the last three columns convey quantitative measures of the speediness of employment adjustment.

How does this law compare to similar laws that other emerging economies have on the books? Is this new Labour Contract Law unprecedented or is China simply catching up with its peers? Overall, the characteristics of countries with respect to these institutional dimensions are quite diverse. It is in relation to firing costs where mainland China looks rather bad by world standards: these amount to 91 weeks of wages, compared with 62 weeks in Hong Kong. Overall, Table 1 indicates that China is a relatively difficult labour market in terms of firing costs and non-wage labour costs. In terms of hiring workers, China performs similarly to its regional peers. Overall, the World Bank’s Doing Business Database still ranks China above its regional peers: India, the Philippines and Vietnam. Conversely, mainland China ranks far below Hong Kong. Furthermore, Fig. 1 indicates that China still has a moderate overall employment regulation intensity on the global scale.23

The numbers in the first column of Table 1 indicate that firing costs in mainland China are unusually high by international standards. However, the number is by no means as highly objective as it may appear at first glance. The reason is that it is based on a very long tenure (20 years of service). Since we don’t want to resort to a less-than-realistic scenario, we assume a worker with 5–7 years of continuous employment in the same firm. Based on a contextual inquiry and a back-of-the-envelope calculation, we

\begin{table}[h]
\centering
\caption{The ease of employing workers — China compared to selected economies.}
\begin{tabular}{|l|c|c|c|c|}
\hline
Country & Firing costs (in terms of weekly wages) & Non-wage labour costs (% of wages) & Difficulty of firing index & Difficulty of hiring index & Rigidity of employment index \\
\hline
China & 91 & 44 & 40 & 11 & 24 \\
Thailand & 54 & 6 & 0 & 33 & 18 \\
Vietnam & 87 & 17 & 40 & 0 & 27 \\
India & 56 & 17 & 70 & 0 & 30 \\
Philippines & 91 & 7 & 30 & 5 & 35 \\
Hong Kong & 62 & 5 & 0 & 0 & 0 \\
United States & 0 & 8 & 0 & 0 & 0 \\
United Kingdom & 22 & 11 & 10 & 11 & 7 \\
Germany & 69 & 19 & 40 & 33 & 44 \\
\hline
\end{tabular}
\end{table}

Notes: All data have been derived from the World Bank Doing Business Database (see http://www.doingbusiness.org/Documents/CountryProfiles/CHN.pdf). In the Doing Business Database, it is assumed that the company is a limited liability manufacturing corporation that operates in the country’s most populous city. It is 100% domestically owned, and has 250 employees. The representative worker is assumed to have 20 years of tenure in the same firm. The cost of firing indicator measures the cost of advance notice requirements, severance payments and penalties due when firing a worker, expressed in terms of weekly wages. Difficulty of firing covers workers’ legal protections against dismissal, including the grounds for dismissal, procedures for dismissal (individual and collective), notice periods, and severance payments. Difficulty of hiring covers the availability of part-time and fixed-term contracts. Finally, the rigidity of employment index is the average of the various sub-indices. The indices range from 0 to 100, with higher values indicating more rigid regulations.

19 For example, in the year 2005 the top three markets where Chinese producers occupied the largest world market shares were textiles (35%), footwear (60%), and toys (40%). Most of these goods are characterised as low value-added and easy-to-substitute.

20 Bentolila and Bertola (1990) have assumed $r = 0.10$ for advanced economies.

21 There are limitations to the international and historical comparability of the measures. For example, in interpreting the numbers it must be borne in mind that summary indicators do not capture certain nuances that may nevertheless considerably affect the impact of employment flexibility. For instance, it is difficult to take into account how procedures are actually applied, particularly where courts are involved. Furthermore, while the interests of workers are increasingly enshrined in law, their rights on the factory floor often remain precarious and are routinely ignored or violated by management.

22 At present, the World Bank Doing Business Database is the most comprehensive employment protection database available. Further all-embracing employment protection indices for 28 countries have been published by the OECD (2004, pp. 62-125). However, the dataset does not comprehend China.

23 China is ranked 86 overall in the Employing Workers category. Regardless of how it compares to labour laws in other countries, it is likely the first time a labour market of this size and significance has so swiftly shifted the balance of power away from the employers and into the hands of the workers and unions.
assumes effective firing costs of $F = 1.0w$ for a worker. The hiring costs are assumed to be $H = 0.1w$. Finally, the non-wage labour costs are assumed to be $\tau = 0.44$ which is taken directly from Table 1. These assumptions lead to the following benchmark for adjustment-related costs ensuring a realistic scenario: $c_h = 0.01 \times w$, $c_f = 0.1 \times w$, $\gamma_h = 0.1$, $\gamma_f = 1.0$, $p_h = 0.055 \times w$, $p_f = 0.553 \times w$ such that $H = 0.055 + \sqrt{2} \times 0.01 \times 0.1 = 0.1w$ and $F = 0.553 + \sqrt{2} \times 0.1 \times 1.0 = 1.0w$.

We first vary the degree of uncertainty σ to develop a feel for the model and to draw a map of the employment sensitivity to various structural characteristics of the environment in which firms operate. The results in Fig. 2 indicate that the intertemporally optimising firm merely perceives there to be the possibility of a change in demand and profitability at some point in the future having an impact upon optimal employment. When firms perceive prevailing demand conditions to be transitory, in the sense that there are more frequent changes, then firms are more reluctant to hire or fire workers, i.e. a larger σ will lead to a considerable widening in the no-action-zone. Conversely, smaller values of σ result in a shrinking of the zone. The intuition is that the firm can counteract the impact of additional uncertainty with a wait-and-see attitude for the time being.

Fig. 3 investigates numerically the impact of higher/lower hiring and firing costs in Eqs. (9) and (10). The major result of the calibrations is that higher hiring and firing costs lead to an increase of the no-action area, i.e. increasing hiring and/or firing costs increase the (upper) hiring threshold (Z^u_H) and decrease the (lower) firing threshold (Z^l_F). On the one hand, laws designed to protect workers against firing dampen unemployment because existing workers are fired less easily. On the other hand, firing costs make it more difficult for firms to fire workers, so firms hesitate to hire them in the first place. Fewer workers become unemployed, but those unlucky few are also less likely to find a job. Therefore, the impact of tighter employment protection on average employment is ambiguous, i.e. higher adjustment costs do not necessarily imply lower average employment.

The impact of employment protection measures depends, among other things, also upon the degree of product market competition. Fonseca, Lopez-Garcia, and Pissarides (2001), Blanchard and Giavazzi (2003) and Chen and Funke (2008) have shown that the degree of product market regulation is as relevant as labour market institutions in affecting employment. Fig. 4 reports the effects of different degrees of ψ. Keeping all institutions fixed except the one in question, it is possible to identify the

Notable points:

- The index ranges from 0 to 100, with higher values indicating more rigid regulations. White shade: 0 < index ≤ 17; light-grey shade: 17 < index ≤ 28; medium-grey shade: 28 < index ≤ 38; dark-grey shade: 38 < index ≤ 48; black shade: index > 48.

Fig. 1. The overall rigidity of employment index on the world scale.

24 The estimates of firing costs in Germany of Bentolila and Bertola (1990) are in the range $0.56 \leq F \leq 0.75$ of the annual wage. The ratio F-Germany/F-China = 0.75/1.0 can also be reconciled with the ratio of firing costs across countries in Table 1 (F-Germany/F-China = 69/91 ≈ 0.75).

25 The hiring costs are broadly consistent with the recruiting and training costs in the calibration of Bentolila and Bertola (1990) and Mortenson and Pissarides (1999). They suggest that this number is consistent with the survey results reported in Hamermesh (1993). While the choices of c_h, p_h, and γ_h might seem arbitrary, it should be noted that in addition to achieving reasonable effective hiring and firing costs (H and F), the corresponding l and related adjustment cost are plausible: $l = \sqrt{2c_h} / \gamma_h$, $l = \sqrt{2p_h} / \gamma_h = 0.44$. For the normalized $l = 1$, $l = 0.44$ implies that the firm could hire/fire 44% of its workers in a given year at a maximum.

26 One issue for employment performance when analysing non-wage labour costs is the extent to which the total tax wedge on labour bears on the employer in terms of increased labour costs. This is because increases in non-wage labour costs can be shifted between employers (in the form of increased labour costs) and workers (in the form of reduced take-home pay) by adjusting the wage level.
impact of varying degrees of product market regulation. The results indicate that lower values of ψ, i.e. higher degrees of competition removing barriers to entrepreneurial activity, are likely to increase employment. Accordingly, labour market reforms should be accompanied by more competition in product markets.

In our baseline scenario non-wage labour costs are assumed to be $\tau = 0.44$ of money wages. The non-wage component of compensation is quite large and Fig. 5 provides a sensitivity analysis of the thresholds with respect to τ, i.e. we investigate numerically the impact of different non-wage costs levels. As expected, a higher share of non-wage labour costs leads to an increase of Z_H and Z_F. This upward shift of the hiring and firing trigger schedules implies that wage restraint is required to induce additional hirings for a given Z-shock.

27 Note that given significant business disruptions during the current financial crisis, local authorities have reduced social insurance contributions in several areas of China (see http://www2.china.ahk.de/download/news/reducing_social_insurance-in_china.pdf).
One caveat of the previous analysis is that the graphs don’t specify the level of employment over time. Since the focus of the paper is employment, we next present a translation from thresholds to employment and assess the impact of various parameters upon labour demand. In order to get a clear feel for the dynamics of the model, we first have to specify a solution method that will lead us to generate discrete realisations of the level of employment, given the chosen levels of parameters. Several options are available at this point, but the structure of the model readily suggests using a sequential iterations method. It works as follows.

Eq. (7) is proxied by the following discrete stochastic differential equation — the Euler scheme,

$$Z_{t+1} = Z_t + \eta Z_t \Delta t + \sigma Z_t \sqrt{\Delta t} \epsilon_t + N(0; 1),$$ \hspace{1cm} (12)

where the normal random variables, ϵ_t, are generated via the central limit theorem and the Box and Muller (1958) method for standardised normal distribution and Δt denotes small changes in time. Over time, the firm does nothing as long as the values for Z_t generated by Eq. (12) fluctuate within the thresholds of hiring and firing — the inaction area. Note that as time passes, some workers quit and thus the inaction area shifts downward due to the lower value of L even when the firm doesn’t hire or fire. For every step in time Δt, the firm hires $\sqrt{2c_h / \gamma_h} \Delta t$ or fires $\sqrt{2c_f / \gamma_f} \Delta t$ if Z_t hits either Z_h or Z_f.28 Thus, the gross changes in employment are governed by the following two discrete-time versions of Eq. (5):

$$L_{t+1} = L_t + \left(+ \sqrt{2c_h / \gamma_h \Delta t} - \delta L_t \right) \Delta t \text{ for hiring}$$ \hspace{1cm} (13)

and

$$L_{t+1} = L_t + \left(-\sqrt{2c_f / \gamma_f \Delta t} - \delta L_t \right) \Delta t \text{ for firing.}$$ \hspace{1cm} (14)

\hspace{1cm} 28 The numbers of hires and fires, I, are derived in Eqs. (A7) and (A8) in the Appendix A.
As time passes, the term Z_t fluctuates according to the corresponding stochastic processes and L_t declines according to the exogenous quit rate as long as Z_t is staying within the no-action area. If Z_t hits the thresholds $(Z_l$ or $Z_h)$, the firm will hire (or fire) employees to raise (or lower) L so that Z_t is again within the no-action area soon, depending on the values of γ.

All the above discussion has been concerned with the employment decision of a single firm. From a macroeconomic point of view, however, the question of primary interest is the impact of uncertainty and (partial) irreversibility on aggregate employment over time. Such dynamic simulations for aggregate employment require two modifications of the modelling framework.

First, it is obvious that one cannot just translate mechanically the above microeconomic partial equilibrium results to aggregate employment. To assess the role of irreversibility in aggregate factor demand, it is essential to take explicitly into consideration the heterogeneity of individual firms’ hiring and firing decisions. Suppose that we re-interpret the model at the macroeconomic level, i.e. L now represents aggregate employment. Unlike microeconomic data, aggregate employment series look smoother since microeconomic adjustments are far from being perfectly synchronized. The question arises as to whether aggregation eliminates all traces of infrequent lumpy microeconomic adjustment. We again focus on employment (L), and we model aggregate employment in terms of the average employment of a number of individual firms indexed by $i \in [1,3000]$.29 Using this analytical tool, we solve the model with 3000 different seeds for the random number generator. Experimentation with larger numbers of runs shows no significant change to the results.

Second, assumptions about Chinese wage growth rates over time have to be made. As so often in China, this debate is clouded by poor data. But there are clear signs that economic power within China, for years heavily weighted towards employers, has slowly shifted in the direction of workers. Reports of labour shortages in the eastern provinces of China but observers initially thought the phenomenon was temporary. Now a surge in both turnover and wage costs is convincing

to the apparently more complex case of dynamic oligopoly under uncertainty. Both approaches therefore permit us to bypass strategic general equilibrium considerations when analysing factor demand under uncertainty.

Figs. 7 and 8 simulate the aggregate employment dynamics for deterministic drift terms $\eta = 0.08$ vs. $\eta = 0.06$ in (7) vs. (12) and alternative hiring and firing related costs. The deterministic drift term $\eta = 0.08$ in Fig. 7 reflects the fast-growing Chinese economy and leads to an increase of employment of 20–30% over a 10-year horizon. The simulated employment dynamics provide a numerical measure of how employment varies with growth in economic output, i.e. the series serves as a useful way of examining how growth in output and growth in employment evolve together over time.32 The implied employment elasticity is broadly

![Annual Growth Rate of Nominal Wages](image)

Fig. 6. Annual growth rates of wages and unit labour costs in China.

Notes: Quarterly data, 2001-2008. **Data Source:** Worldbank, Beijing Office.

29 We ignore behavioural assumptions regarding market rivalry, which in turn would necessitate some kind of game-theoretic analysis to take account of the strategic interactions among the firms, the results of which are in turn heavily dependent on assumptions regarding the information sets available and the type of game being played. The ramifications of competitive interaction for the decision-making of firms has been discussed by Leahy (1993). He has shown that the assumption of myopic firms who ignore the impact of other firms’ actions results in the same critical boundaries that trigger factor demand as a model in which firms correctly anticipate the strategies of other firms. Grenadier (2002) has recently extended the “Principle of Optimality of Myopic Behavior” of Leahy (1993) to the apparently more complex case of dynamic oligopoly under uncertainty. Both approaches therefore permit us to bypass strategic general equilibrium considerations when analysing factor demand under uncertainty.

30 Wages are rising for several reasons. Despite the increase in highly skilled workers, a shortage of highly skilled labourers continues, meaning that they can demand higher wages from companies lacking such skills. This has a knock-on effect on lower-level wages, as these workers feel encouraged to demand higher wages.

31 As a consequence of the low retirement age, strong growth in life expectancy and the one-child policy, non-wage labour costs are likely to increase in the future. The increase in wage growth could thus also reflect growth in non-wage rather than the wage component in total labour costs.

32 In Figs. 7 and 8, aggregation eliminates all traces of infrequent lumpy microeconomic adjustment. This smooth adjustment feature is consistent with the evidence in Caballero, Engel, and Haltiwanger (1995). The authors have proposed a framework allowing us to link the probability distributions of the state of individual factor demand to cross-sectional distributions at aggregate levels. The paper suggests that idiosyncratic shocks tend to smooth out microeconomic rigidities by spreading agents in state space.
consistent with the country-level estimates of the *International Labour Organization* for the period 2001–2005 and therefore the benchmark parameterisation of the model gets the employment-side of the macroeconomic picture right.\(^{33}\)

The dashed line in the left panel of Fig. 7 indicates that a 25% fall in overall firing costs \(F\) is due to a fall in \(p_r\). In contrast, the right panel of Fig. 4 summarises the inferences that can be drawn from reducing \(\gamma_F\) vs. \(\gamma_H\) and therefore the speediness of employment adjustment. The essence is that in a fast-growing economy like China less stringent firing costs have a negligible impact upon employment. On the contrary, a lower \(\gamma_H\) parameter accelerates job creation. Such a reduction of \(\gamma_H\) can be interpreted as a matching process that becomes more efficient, generating less labour market frictions.\(^{34}\) Interestingly, the positive impact of such a reform turns out to be weak in the short run, suggesting that the full realisation of the employment gains is revealed not until some time has elapsed.

Recently, collapsing exports to the west caused China’s GDP growth to slide to just 6.8% in the final quarter of 2008, underlining China’s vulnerability to the global downturn.\(^{35}\) This reflects that the international financial crisis is deepening and spreading with continuing negative impacts on the Chinese economy. As a result, several observers have predicted that Chinese growth could sink to just 5–6% in 2009. That would be well below China’s target of 8%, the level many analysts believe is needed to create enough jobs

\(^{33}\) The higher the elasticity, the more employment-intensive is economic growth. Chapter 19 of http://www.ilo.org/public/english/employment/strat/kilm/ indicates that mainland China had an employment elasticity of about 20% over the period 2001–2005. \(\eta = 0.08\) implies a growth rate of \((1 + 0.08)^{10} \approx 116\%\) over a 10-year horizon. A growth rate of employment of 25–30 percent over the same horizon therefore implies an employment elasticity of 20-25 percent, i.e. a 1 percent increase in GDP is associated with employment growth of 0.2–0.25 percent.

\(^{34}\) This confirms that more stringent hiring costs may be particularly problematic. There appears to be relatively straightforward empirical evidence that stringent employment protection legislation has a strong effect on the market access of small and medium-sized firms. It may be interesting to note, however, that the negative impact of heavy-handed regulation is found to stem not so much from barriers to entry as barriers to expansion, notably job protection laws that discourage new hirings (see OECD, 2002). Since the difficulty of hiring in mainland China is still fairly low by international standards, the momentum for employment growth in China may not be reduced by the new Labour Contract Law.

\(^{35}\) China uses a method that compares growth in one quarter with a full year earlier and says its economy expanded by a healthy 6.8 percent in the final quarter of 2008. But compared to the previous 3 months — the system used by most other major countries — China’s growth fell to as low as 1–2 percent or possibly zero.
for new workers entering the labour force and keep a lid on social unrest. Against this background, Fig. 8 comprises the results for \(\eta = 0.06 \). As expected, the lower average growth rate of demand in conjunction with the same cost pressure leads to lower employment. It is worth noting that the qualitative results concerning \(F, \gamma_F \) and \(\gamma_H \) are reobtained. Overall, the message of Figs. 7 and 8 is that we can take some comfort that the new Labour Contract Law will not cause lower employment in mainland China as long as growth is robust.

In Figs. 7 and 8 we have assumed a given wage level and a given growth rate for wages. However, a proper discussion of the effects that changing labour market regulation brings to the rest of the economy demands a rough estimate of the induced wage increases after 2008. Although the new Labour Contract Law, was meant to provide solely greater protection to workers, the Economist Intelligence Unit reckons that the new Labour Contract Law has added approximately 20% to workers’ labour costs.36 But there are reasons to be sceptical. An alternative compelling story is that wages in China are priced by international demand for Chinese products. Ultimately, the Labour Contract Law may not determine the competitiveness of an economy with a flexible labour market and factor mobility. Given the gloomier outlook for GDP growth rates in 2009–2010 due to the current worldwide crisis, the Chinese labour market may turn out to be more flexible and the crisis may ease the upward pressure on wages. Fearful of rising unemployment due to the rapid collapse of economic activity, both local and the national government have recently backtracked on policies that have raised firms’ costs. Exporters’ tax rebates have been restored and the Labour Contract Law that initially added costs may turn out to be more flexible than it first appeared.37 This may imply that China will retain much of its competitive wage edge in the medium-run.

Given this ambiguity, alternative wage premiums are simulated in Fig. 9. Rather than presenting static thresholds, we again focus upon the dynamic employment effects.

In Fig. 9, the implications of alternative wage reactions are illustrated graphically. Alongside the baseline case (\(w_0 = 1.0 \)), two alternative scenarios are given. The dashed line (\(w_0 = 1.2 \)) mirrors the Economist Intelligence Unit’s view that the new Labour Contract Law has added approximately 20% to workers’ labour costs. Not surprisingly, the employment trajectory shows that due to the induced wage-setting, employment is adversely affected compared to the benchmark. On the contrary, the dotted line (\(w_0 = 0.8 \)) reflecting concession bargaining in light of the current crisis gives rise to optimism. This confirms the mounting empirical evidence in the literature that lower wage costs are an effective way to boost employment. Taking the alternative numerical simulations into consideration, we conclude that the rather uncertain wage reaction represents the real issue and “Achilles heel” for future employment growth in China.

5. Concluding remarks

On January 1, 2008, the Chinese Labour Contract Law went into effect, ushering in sweeping changes to Chinese labour policy. A proper discussion of the effects that changing labour market regulation brings to the rest of the economy demands that policy changes are placed within the context of economic theory. This paper is an attempt at providing a theoretical framework that clarifies thinking on the inter-linkages between labour market regulation, option value and the choice and timing of employment. So what can an analyst or policymaker learn from the modelling exercise? Despite some challenges to the quality of the data, one

36 For these estimates resulting to a significant loss of competitiveness for the Chinese economy, see http://www.economist.com/agenda/displaystory.cfm?story_id=13053205. A relevant feature is that firing costs create a hold-up problem (see, e.g., Caballero & Hammour, 1998; Díaz-Vázquez & Snower, 2003) enabling insiders (incumbent workers) to bid up wages once they are employed. Furthermore, a larger share of workers with fixed-term contracts tends to insulate insiders (permanent workers) from adjustment, thereby increasing their bargaining power.

37 At 18 September 2008, China’s State Council issued an implementation regulation for the Labour Contract Law which lists 14 situations under which employers can fire workers with permanent contracts. The 14 situations are rather broad and therefore imply a softening of the Labour Contract Law. Furthermore, the regulation limits the penalties for employers not complying with the law to 20,000 RMB (see http://english.sina.com/china/2008/0918/187148.html).
basic conclusion appears to be robust: the Labour Contract Law in a literal sense is not wreaking havoc and will not reduce employment in law-abiding firms. This result is robust to different assumptions made in calibrating the model.\footnote{The lowish estimates of the economic impacts of the labour contract law miss one thing. More stringent employment protection may reduce firms’ ability to cope with a rapidly changing global economy and take advantage of the opportunities offered by new technologies and access to new markets. Hopenhayn and Rogerson [1993] have presented a general equilibrium model including the entry and exit of firms and show that a tax on job destruction can reduce employment significantly.}

In contrast, higher future wage growth outpacing labour productivity growth will slow employment down. The underlying motivation for the new Labour Contract Law may therefore be that China no longer wants to be the home of low-skilled, low-cost, low-margin manufacturing. Instead, Chinese companies should try to move up in the value chain. The government is backing the drive with a two-pronged approach: using incentives to encourage companies to innovate, but also moving to discourage low-end manufacturers from operating in the country from setting up operations. By introducing tougher labour standards, the government has sent a powerful signal about its global ambitions, and helped encourage an exodus of factories from an area long considered the world’s shop floor. The Chinese government policies now favour high-tech economic zones, research and development centres and companies that promise higher salaries and more skills. It remains an open question whether this strategy will create sufficient employment opportunities for the large number of impoverished workers and translate into favourable outcomes, such as poverty alleviation.\footnote{How can the wage push hypothesis be reconciled with economic theory? The hypothesis that tighter labour market regulation facilitates long-run economic growth turns out to be highly counterfactual in Schumpetarian growth models with competition and entry. For example, Aghion and Howitt (2009, pp. 278-279) have shown that proworker labour market regulations discourage innovation and growth. Their long-run modelling results imply that there are still issues worth discussing when assessing the implications and prerequisites of reform.}

Acknowledgement

The authors thank two anonymous referees for their comments and suggestions on an earlier version of the paper. Michael Funke thanks the Bank of Finland and the Hong Kong Institute for Monetary Research for their hospitality during his visits there.

Appendix A. Derivation of hiring and firing thresholds

Using Itô’s Lemma, the Bellman equation for the value V at time zero is

$$
V = \max \left\{ Z^{A1} K^{A2} L^{1-A3} - w(1 + \tau) L - C(I) + V(I - \lambda L) + \eta_w w V_w + \eta_h A V_h + \eta Z V_z + \frac{1}{2} \sigma^2 Z^2 V_Z \right\}.
$$

\(\text{(A1)}\)

The representative firm decides the optimal condition of hiring or firing. The next step will be to obtain optimal conditions for hiring and firing. The first-order conditions for gross employment changes (I) of Eq. (A1) are denoted by

$$
\pm p_h f + \gamma_{h; f} f = v,
$$

\(\text{(A2)}\)

where $v = V_L$. Substituting the above equations into Eq. (A1) yields equations for hiring/firing:

$$
V = Z^{A1} K^{A2} L^{1-A3} - w(1 + \tau) L - c_h + \frac{1}{2} \frac{(v - p_h)^2}{\gamma_h} - \lambda v + \eta_w w V_w + \eta_h A V_h + \eta Z V_z + \frac{1}{2} \sigma^2 Z^2 V_Z
$$

\(\text{(A3)}\)

$$
V = Z^{A1} K^{A2} L^{1-A3} - w(1 + \tau) L - c_f + \frac{1}{2} \frac{(v + p_f)^2}{\gamma_f} - \lambda v + \eta_w w V_w + \eta_h A V_h + \eta Z V_z + \frac{1}{2} \sigma^2 Z^2 V_Z
$$

\(\text{(A4)}\)

Due to fixed costs of hiring and firing, the firm would only hire/fire workers whenever the total benefits of hiring/firing are greater than the corresponding total adjustment costs. Therefore, for hiring decisions ($I \geq 0$), the benefits of hiring I employees, IV, must be greater than its total adjustment costs, $c_h + p_h I + \frac{1}{2} \gamma_h I^2$. In case of firing ($I \leq 0$), v is negative. Thus, the total benefits of firing $|I|$ employees is captured by IV; while the total adjustment costs of firing are $c_f - p_f |I| + \frac{1}{2} \gamma_f I^2$. Thus, we have

$$
IV - \left(c_h + p_h I + \frac{1}{2} \gamma_h I^2\right) \geq 0 \text{ for hiring}
$$

\(\text{(A5)}\)

$$
IV - \left(c_f - p_f I + \frac{1}{2} \gamma_f I^2\right) \geq 0 \text{ for firing}
$$

\(\text{(A6)}\)
Eqs. (A5) and (A6) can be simplified by using (A2):

\[I \geq \sqrt{\frac{2c_{i}}{\gamma_{h}}} > 0 \] for hiring

\[I \leq -\sqrt{\frac{2c_{f}}{\gamma_{f}}} < 0 \] for firing. \hfill (A7)

The boundaries of the inaction area are then represented by the following equations:

\[v = H = p_{h} + \sqrt{2c_{i} \gamma_{h}} \] for the hiring threshold \hfill (A9)

\[v = -F = -\left(p_{f} + \sqrt{2c_{f} \gamma_{f}}\right) \] for the firing threshold. \hfill (A10)

where \(H \) denotes the effective hiring-cost threshold, depending on the fixed costs, unit costs and adjustment speed costs parameters of hiring; \(F \) is the effective firing-cost threshold; and \(v = V_{l} \) is the marginal intertemporal value of profits with respect to workers. Substituting (A9) and (A10) back into (A3) and (A4) respectively gives the following optimised Bellman equations for both hiring and firing:

\[(r + \lambda)v = \frac{1 - \alpha}{\psi} Z \Lambda A^{\frac{1}{\gamma_{h}}} L_{s}^{\frac{1}{1+\gamma_{h}}} - w(1 + \tau) - \lambda L v_{I} + \eta_{h} w v_{W} + \eta_{A} L v_{A} + \eta_{B} L v_{B} + \frac{1}{2} \sigma^{2} Z^{2} v_{Z}. \] \hfill (A11)

where \(v = V_{l}, v_{2} = V_{lZ}, v_{3} = V_{lZS}, v_{i} = V_{lI}, v_{3} = V_{lIS}, \) and \(v_{w} = V_{lw}. \) The solution for \(v(Z) \) consists of the particular solutions and the homogenous solutions. The particular solutions can be obtained from the direct integration of the following particular integral without considering hiring and firing:

\[v^{p}(Z) = E \left[\int_{0}^{\infty} \frac{1 - \alpha}{\psi} Z \Lambda A^{\frac{1}{\gamma_{h}}} L_{s}^{\frac{1}{1+\gamma_{h}}} - w(1 + \tau) \right] e^{\left(r + \lambda \right) s} ds. \] \hfill (A12)

After integration, we obtain the following particular solutions:

\[v^{p}(Z) = \frac{1 - \alpha}{\psi} Z \Lambda A^{\frac{1}{\gamma_{h}}} L_{s}^{\frac{1}{1+\gamma_{h}}} \frac{1}{r + \lambda - \frac{\alpha}{\psi}} - \frac{w(1 + \tau)}{r + \lambda - \frac{\alpha}{\psi}}. \] \hfill (A13)

The homogenous solutions, often representing the options to hire and fire, can be obtained from the homogenous part of Eq. (A11). Letting \(v^{h} \) be the value of the option, it is easy to see that the following general solutions for the hiring and firing options \((v_{h}^{h} \) and \(v_{f}^{h} \)) satisfy the homogenous part of Eq. (A11) respectively:

\[v_{h}^{h}(Z) = A_{1} \left(Z \Lambda A^{\frac{1}{\gamma_{h}}} L_{s}^{\frac{1}{1+\gamma_{h}}} \right)^{\beta_{1}} \] \hfill (A14)

\[v_{f}^{h}(Z) = A_{2} \left(Z \Lambda A^{\frac{1}{\gamma_{h}}} L_{s}^{\frac{1}{1+\gamma_{h}}} \right)^{\beta_{2}} \] \hfill (A15)

where \(\beta_{1} \) and \(\beta_{2} \) are the positive and negative roots of the characteristic equation

\[\frac{1}{2} \sigma^{2} \beta(\beta - 1) + \eta_{B} \beta + \frac{\eta_{A}}{\psi} - \frac{1 - \alpha}{\psi} \lambda \beta - r = 0. \] \hfill (A16)

Note that the boundary conditions for hiring and firing \(v_{h}^{h}(0) = 0 \) and \(v_{f}^{h}(\infty) = 0 \) are satisfied. With the particular solutions and homogenous solutions, the value-matching conditions for hiring and firing are obtained and are discussed in details in the main text.

References

